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Abstract: This study investigates the assimilation impact of rapid-scan (RS) atmospheric motion
vectors (AMVs) derived from the geostationary satellite Himawari-8 on tropical cyclone (TC) forecasts.
Forecast experiments for three TCs in 2016 in the western North Pacific basin are performed using
the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research
and Forecasting Model (HWRF). An ensemble-variational hybrid data assimilation system is used as
an initialization. The results show that the assimilation of RS-AMVs can improve the track forecast
skill, while the weak bias or slow intensification bias increases at the shorter forecast lead time.
A vortex initialization in HWRF has a substantial impact on TC structure, but it has neutral impacts
on the track and intensity forecasts. A thinning of AMVs mitigates the weak bias caused by RS-AMV
assimilation, resulting in the reduction of intensity error. However, it degrades the track forecast
skill for a longer lead time. A decomposition of the TC steering flows demonstrated that the change
in TC-induced flow was a primary factor for reducing the track forecast error, and the change in
environmental flow has less impact on the track forecast. The investigation of the structural change
from the assimilation of RS-AMV revealed that the following two factors are likely related to the
intensity forecast degradation: (1) an increase of inertial stability outside the radius of maximum wind
(RMW), which weakens the boundary layer inflow; and (2) a drying around and outside the RMW.

Keywords: tropical cyclone; atmospheric motion vector; data assimilation

1. Introduction

The improvement of tropical cyclone (TC) forecast is essential to reduce and mitigate their social
and economic impacts. The data assimilation is one of the critical components to improving TC forecast
by analyzing the accurate initial condition in previous studies [1–12]. Although the inclusion of the
airborne observation in data assimilation has positive impacts on track [13–15], intensity [2,8,12,16,17]
and structure [5,8,17,18] of forecasts in the regional models, this data is limited in the western North
Pacific. On the other hand, satellite radiance observation or satellite retrieved products such as
atmospheric motion vectors (AMVs; [19]), which are derived by tracking clouds or areas of water
vapor through consecutive satellite images, are available globally and over the ocean. The AMVs
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are important wind information for numerical models around the TC and over the oceans where the
conventional wind data is sparse. Therefore, assimilating the frequent and wide coverage AMV data is
attractive for the TC forecasts in the operational models.

Rapid-Scan AMV (RS-AMV) consists of the frequent scan of the geostationary satellite with a
sub-hourly (5–15 min) time interval. This has a potential to provide the temporally dense observation
around the TC. The previous studies remarked that the possibility to improve the TC analysis and
forecast by assimilating the RS-AMV [3,4,6,9,11,12]. Himawari-8, the third-generation geostationary
meteorological satellite operated by the Japan Meteorological Agency (JMA) in 2015, has achieved
significant improvements in resolution, scan frequency, and number of bands [20]. Thus, the Himawari-8
products, such as RS-AMV, are expected to improve TC analysis and forecast through data assimilation.
There are some previous studies that investigated the impacts of RS-AMV from Himawari-8. Kunii et
al. [21] remarked that the assimilation of RS-AMVs from Himawari-8 into JMA’s operational regional
model provided better weak and moderate rainfall forecasts, by taking advantage of high-frequency,
targeted observation from Himawari-8. Otsuka et al. [22] conducted the data assimilation experiments
of RS-AMV for the cold vortex event using the JMA’s operational regional model, and it has improved
the wind forecasts slightly in early forecast lead times before 12 h. However, the impacts of RS-AMV
from Himawari-8 on TC forecast have not been fully investigated.

A vortex initialization (VI) is one of the unique techniques to analyze and initialize the TC
vortex in a Hurricane Weather Research and Forecasting (HWRF) model, which is the operational
hurricane model at the National Oceanic and Atmospheric Administration (NOAA). VI adjusts vortex
structure, intensity, and position based on the observed TC parameters provided by the National
Centers for Environmental Prediction (NCEP) TC-Vitals [23,24]. The modification of VI contributed to
the reductions in intensity and track forecast errors [25]. However, Tallapragada et al. [26] pointed out
the assimilation of the conventional data after performing VI tends to generate larger initial imbalance
since the vortex is already close to a balanced state as imposed by VI procedure [24]. To overcome
this issue, ensemble-based hybrid assimilation has been implemented in HWRF [8,27]. Lu et al. [27]
showed that a continuously cycled hybrid ensemble system in HWRF with the background error
covariance created from HWRF ensemble using airborne radar data can produce better TC analysis and
forecasts without VI, compared with that created from the Global Ensemble Forecast System. Velden et
al. [6] conducted the data assimilation experiments on the RS-AMVs derived from GOES-13 on three
TCs over the North Atlantic basin using HWRF. They found that the magnitude of the impact depends
on the availability of RS-AMVs and the degree to which unbalanced states are allowed to enter the
model analyses through vortex initialization (VI) incorporated in HWRF, though a modest positive
impact on track and intensity forecasts can be obtained. Zhang et al. [9] tackled the issue of how the
assimilation of high-resolution AMVs with and without VI influences the TC forecast. They revealed
that the assimilation of high-resolution AMVs benefits the track and intensity forecast both with and
without the VI. Additionally, the assimilation of high-resolution AMVs can alleviate unrealistic vortex
modification due to VI, resulting in improved intensity forecasts. Although the impacts of VI on TC
forecast over the North Atlantic and eastern North Pacific has been conducted, the investigation over
the western North Pacific has not been conducted.

To make efficient use of spatially dense observation data like AMV, data thinning is necessary
because, in general, the length of horizontal observation error correlation is shorter than that of
RS-AMVs. Several studies documented that the estimated horizontal observation error correlation
length for AMVs was 150–200 km [28,29]. Yamashita [30] remarked that the thinning of RS-AMVs from
MTSAT-1R had a positive impact on precipitation forecast and showed a slight improvement for the
TC intensity forecast. On the other hand, Otsuka et al. [22] showed that data thinning of RS-AMVs had
neutral or little positive impacts on the forecast winds and temperatures because more RS-AMVs with
a shorter length thinning scale might cause a more positive impact. At least, the degradation originated
from spatial observation error correlation between neighboring observations was not be found in their
study. Thus, it is worth examining the impact of thinning for RS-AMV on the TC forecast.
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This study aims to demonstrate there is the potential to improve TC forecast by assimilating
rapid-scan AMVs derived from Himawari-8 for the operational TC forecast model, which is the
extension of previous authors’ study [11]. Additionally, we investigate impacts of VI by turning off VI
and how the RS-AMVs were effectively assimilated by changing the thinning distance of RS-AMVs.
This paper is organized as follows. Section 2 describes an overview of RS-AMVs, experimental design
of HWRF, and selected TC cases. Section 3 shows statistical verifications of numerical experiments,
and axisymmetric structures are examined. Section 4 gives a conclusion of this study.

2. Case and Methodology

2.1. Rapid-Scan Atmospheric Motion Vector of Himawari-8

The Himawari-8 RS-AMVs were computed every 10 min from three consecutive images of the
target region taken at 2.5-min intervals for the visible (VIS) channel and at 5-min intervals for the
infrared (IR) and Water Vapor (WV) channels. The motion vectors are retrieved from the tracking of
the displacements of clouds in forward and backward. The RS-AMVs are derived at approximately
0.02◦ by 0.02◦ if the target box is traceable. The height of the motion vectors was assigned based on
maximum likelihood estimation with observed radiances from Himawari-8 and the first guess of
humidity and temperature profiles from the JMA’s global atmospheric model. The algorithm used was
the same as the operational AMVs [31]. Error characteristics of RS-AMV were summarized by Otsuka
et al. [22], and they showed the root mean square vector differences relative to the sonde observation in
the VIS, WV, and IR channels were around 6.4–8.1 m s−1 at low-mid levels, 9.1–9.8 m s−1 at high-levels.

This study examines the impacts of frequent rapid-scan AMVs in addition to AMVs derived
from full-disk imagery. The full-disk scan Himawari-8 AMVs (or operational AMVs) are derived at
approximately 0.2◦ by 0.2◦ at 30 min intervals if the target box is traceable. We used the operational
AMVs (hereafter OPAMV) as a baseline experiment, which describes in next subsection. The observation
errors for OPAMV and RS-AMV used in data assimilation system was the same because the algorithm
for AMV derivation and its configuration are the same.

2.2. Outline of HWRF and Experimental Design

HWRF is an NCEP operational hurricane forecast system and is a triple-nested, atmosphere–ocean
coupled system. HWRF version 3.9 used in this study was obtained from the HWRF developers’
repository on 1 March, 2017. The configuration of HWRF is identical to the previous work done by
Sawada et al. [11]. The brief description of the configuration is the following. The forecast domain sizes
are 80◦ × 80◦ with 18-km grid spacing for the parent domain (outermost domain, called d01), 24◦ × 24◦

with 6-km grid spacing for the outer nested domain (d02) and is 7◦ × 7◦ with 2-km grid spacing for the
innermost nested domain (d03). The HWRF has 61 hybrid vertical levels from the surface to 10 hPa.
The physical processes include the modified eddy-diffusivity mass-flux planetary boundary layer
scheme of NCEP Global Forecast System [32], the scale-aware simplified Arakawa-Schubert convection
scheme [33], the Ferrier-Aligo microphysical scheme [34], and the Rapid Radiative Transfer Model
for GCMs longwave and shortwave radiation scheme [35]. The details can be found in the HWRF
scientific documentation [36].

In HWRF, the atmospheric fields of d01 are initialized from the Global Forecast System analysis,
and the first guess for two nested domains (d02 and d03) is a 6-h forecast from the global data
assimilation system with VI. The vortex-scale fields originated from the previous 6-h forecast of
HWRF when available. The vortex is adjusted based on the TC Vitals and inserted into the first
guess. Otherwise, the corrected vortex from the 6-h global data assimilation system forecast is used.
After VI, the HWRF Data Assimilation System, which is based on the Gridpoint Statistical Interpolation
system, is utilized for the two nested domains (d02 and d03) with a 6-h cycle to generate a vortex
structure and its surrounding environment. The assimilation domains (called the ghost d02 and
d03) have broader coverage than those of the forecast d02 and d03 and have corresponding domain
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sizes of 28◦ × 28◦ and 15◦ × 15◦, respectively. For the ensemble-variational hybrid assimilation,
the background error covariance of the hybrid system is derived from a mixture of flow-dependent
and static sources. The flow-dependent covariance is estimated from the HWRF 40-member ensemble.
The static (climatological) covariance is obtained through the National Meteorological Center (now
NCEP) method [37,38]. The weighting factor for static and flow-dependent background error covariance
is set to 0.2 and 0.8, respectively. The ensemble forecasts of HWRF are initialized or warm-started from
the Global Ensemble Forecast System at each cycle in this study.

A merging or blending procedure is applied after data assimilation to combine the HWRF Data
Assimilation System analysis to the global data assimilation system analysis to avoid spindown of
intense storms [5,8,36]. In the blending procedure, the increments from the HWRF Data Assimilation
System analysis are removed below the 600 hPa pressure level if they are within 150 km of the TC
center. The increments are gradually reintroduced between 150 and 300 km in the radial direction and
between 400 and 600 hPa in the vertical. The blending is used when the maximum sustained wind
speed equal to or greater than 65 kt. When the blending is turned on, full or part of increments within
300 km radius and below 400 hPa, which is where the RS-AMV data densely exist, are eliminated.
Even though the impact of data assimilation is propagated to the inner core region through the
vortex-scale data assimilation cycle during the 6-h forecast, as shown in previous studies [6,10–12],
it is worth considering the impact of full increments for the TC inner-core region [9].

To investigate the impacts of RS-AMV on the TC forecast in HWRF, four sets of experiments have
been carried out, as shown in Table 1. The initial condition of the CTL (The CTL experiment was
identical to the DAhAMV experiment of previous authors’ study [11]) experiment is given from the
assimilation of conventional and satellite radiances observation data using the ensemble-variational
hybrid assimilation method with vortex initialization. The Himawari-8 AMV (OPAMV) was assimilated
from three hours prior to one hour after the analysis time. The asymmetric assimilation window was
applied to make use of observation data as much as possible within a constraint of cutoff time. In the
RAMV experiment, the initial condition was created from the assimilation of observation data used in
the CTL experiment and from RS-AMV. The RS-AMV was ingested within one hour of the analysis
time. To examine the impacts of vortex initialization on TC forecast and its structure, the RAMV_NVI
experiment, which the vortex initialization was turned off, was conducted. By comparing between
the RAMV and RAMV_NVI experiments, the effects of vortex initialization are explored. To look
into whether the data thinning of RS-AMV has a positive impact on TC forecast by reducing the
horizontal observation correlations of dense RS-AMV data, the horizontal thinning distance of 10 km
was applied for RS-AMV in the RAMV_T10K experiment. The 10 km thinning distance was applied
to the RS-AMVs such that there is only one wind every 10 km by 10 km square. The density of the
original RS-AMV is around 20 wind data for 10 km by 10 km square in maximum. The total number of
forecast cycles of the three TCs was 73 in each experiment, as shown in Table 2.

Table 1. Outline of control and sensitivity experiments.

Case Assimilated AMVs VI Thinning

CTL OPAMV On None
RAMV OPAMV + RS-AMV On None

RAMV_NVI OPAMV + RS-AMV Off None
RAMV_T10K OPAMV + RS-AMV On 10 km

Table 2. List of start and end date of each case used in the experiment.

Case Cycle Period No. of Cycles

Nepartak 1800 UTC 2 July–0000 UTC 9 July 2016 26
Meranti 1200 UTC 8 September –1800 UTC 14 September 2016 26

Megi 0600 UTC 23 September –0600 UTC 28 September 2016 21
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2.3. Cases of TC

Three TCs over the western North Pacific in 2016 are selected as following Sawada et al. [11].
Figure 1 shows the track and intensity of the three selected TCs: Nepartak, Meranti, and Megi. The track
and intensity data were obtained from the Joint Typhoon Warning Center best track. The start and end
date when HWRF ran and the number of cycles for each TC are listed in Table 2.

Figure 1. (a) TC tracks for Nepartak, Meranti, and Megi. Symbols are plotted with 12-hourly.
TC Intensities for (b) Nepartak, (c) Meranti, and (d) Megi. Each line color indicates storm intensity
categories on the Saffir-Simpson scale.

3. Results

To evaluate the impacts of RS-AMV, VI, and thinning of AMV data on TC forecast, the verification
results of each impact are described, respectively. The skill or improvement rate relative to CTL is
defined by

SKILL = 100 (ECTL − EEX)/ECTL, (1)

where ECTL and EEX are the mean track error or root-mean-square error (RMSE) of intensity or size
from CTL and a given experiment, respectively.

3.1. Track Forecast

The track forecast verification for all three TCs is displayed in Figure 2. The track errors are
calculated from the great-circle distance between a cyclone’s forecast position and the best track position
at the forecast time. The track errors of RAMV and RAMV_NVI is smaller than that of CTL, followed
by RAMV_T10K, for whole forecast lead time except at initial time and forecast lead time of 54 h
(FT = 54 h). The improvement rates of RAMV and RAMV_NVI with respect to the CTL ranges from
5% to 10% for FT = 6–36 and 60–126 h. This improvement demonstrates that assimilating RS-AMVs
benefits the track forecast skill. There is little difference between RAMV and RAMV_NVI, indicating
that VI has a neutral impact on track forecast. The track errors of RAMV_T10K increases at the longer
lead time (>FT = 48 h) compared to those of RAMV and RAMV_NVI. Applying data thinning to
RS-AMVs with a 10 km interval has a negative impact on track forecast in this configuration and the
present cases at least. It implies that the positive impact originated from more RS-AMVs with a shorter
length thinning scale might outweigh the negative impact originated from spatial observation error
correlation between neighboring observations.
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Figure 2. Statistics of (a) track error with reference to the best track data and (b) track forecast skill
relative to CTL for all cases. Numbers in cyan indicate sample size for each forecast lead time.

3.2. Intensity Forecast

The RMSE of maximum sustained surface winds or Vmax showed that RAMV_T10K is the smallest
at more than half of forecast lead times in the four experiments (Figure 3). RAMV and RAMV_NVI show
the improvement of intensity forecast skill for FT = 6–102 h. The addition of RS-AMV has a positive or
neutral impact on intensity forecast except at longer forecast lead times. The RMSE is slightly smaller
up to FT = 6–24 in the RAMV_NVI than in the RAMV, but it is slightly larger for FT = 30–48 h. The bias
of Vmax shows all the experiments have negative (weak) intensity bias because all the experiments
could not reproduce the extremely rapid intensification and its peak intensity for Nepartak and Meranti.
The initial weak intensity bias arises from a spindown reported by previous studies [8,11,27]. Sawada
et al. [11] remarked that the assimilation with the background error covariance created from the HWRF
ensemble effectively alleviates the intensity errors and biases. Even though the Vmax drop at the
initial forecast lead time is smaller in this study than in the previous one, it still remains. The biases of
Vmax are larger in both RAMV and RAMV_NVI than CTL for the first 12 h, meaning that VI has a
little impact on the weak bias at initial forecast time from the viewpoint of the intensity verification.
RAMV_T10K shows that the bias is the smallest up to FT = 18 in all the experiments. It indicates there
is room to improve the intensity forecast by optimizing the thinning interval.
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Figure 3. As in Figure 2, but for (a) RMSE, (b) skill, and (c) bias of Vmax.

3.3. Size Forecast

The TC size contains four parameters: the 34-, 50-, and 64-kt wind radii (R34, R50, R64,
respectively, hereafter) and radius of maximum wind (RMW). R34, R50, and R64 forecast verification
were conducted when averages of the radii over four quadrants were taken. A sample was included in
this size verification if at least three of the quadrants have a value for the wind radius and this occurs
in all four experiments, to homogenize the sample. RMW forecast was verified for all the cases.

Figure 4 shows the skill of size forecast. Assimilating RS-AMV improves R64 forecast for more than
half of forecast lead times, especially up to 36 h. The improvement rates for R64 in RAMV, RAMV_NVI,
and RAMV_T10K with respect to CTL reach 13.9%, 13.5%, and 13.4%, respectively, on average for
FT = 0–36 h. Compared to CTL, the RMSEs of R50, R64, and RMW tends to decrease for longer forecast
lead times, while the RMSE of R34 increases for FT = 114–126 h. The RMW forecast errors became
much larger for FT = 0–36 h in RAMV, RAMV_NVI, and RAMV_T10K than in CTL. The assimilation of
RS-AMV might deteriorate the representation of TC inner core because the RS-AMVs are too densely
distributed around the TC without thinning and/or without accounting for the horizontal observation
error covariance. The verification of RMW bias shows that the inclusion of RS-AMV brings about
positive (large) bias at early forecast lead times (Figure 5). The positive bias partly contributes to the
increase in RMW forecast error. For R34 and R50, amplify the negative (small) bias.
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Figure 4. As in Figure 3, but for skill of (a) R34, (b) R50, (c) R64, and (d) RMW.
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Figure 5. As in Figure 4, but for bias of (a) R34, (b) R50, (c) R64, and (d) RMW.

Surprisingly, VI has positive impacts on R34 and R50 forecast up to 18 h at most, despite that the
significant difference in axisymmetric structures can be analyzed at the initial condition, as shown in
Section 3.5. The impacts of VI are neutral for R64 and RMW. The negative biases of R50 and R64 in
RAMV_NVI are the largest up to FT = 42 and 30 h, respectively, in all the experiments. The negative
bias of R34 was larger at early forecast lead times in RAMV_NVI than in RAMV. These suggest that VI
has the effect of expanding the TC size, leading to compensation of the negative size biases. Note that
the three typhoon cases selected in this study are very intense, and their inner core structures tend to
be axisymmetric based on R64 of best track. In that case, VI could help to improve the representation
of the inner core vortex structure. Despite that, the improvement seems to be limited in this study.
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The initial degradation of R34 and RMW forecast by assimilating RS-AMV was slightly alleviated
in RAMV_T10K, implying that the thinning method and/or horizontal observation error covariance
needs to be optimized to make more effective use of dense RS-AMVs. There is little difference in biases
for all metrics between RAMV and RAMV_T10K.

Overall, the impacts of RS-AMV assimilation on TC sizes is not coherent because the impacts are
mixed among the metrics and the forecast lead times. However, it is clear that the biases of R34 and
RMW increase with the forecast lead time in all the experiments, which is consistent with Sawada
et al. [11]. The increasing trend of TC size bias can also be found for TCs over the North Atlantic
by Lim et al. [10]. These results imply the systematic bias of TC size originates from the physical
schemes in HWRF, not the initial condition. Even though the vortex initialization has remarkable
impacts on axisymmetric TC structures, there were little differences in R34 and RMW in the viewpoint
of verification.

3.4. Track Error Analysis

As shown in Figure 2, the improvement in track forecast skill by assimilating high-resolution
AMVs is roughly consistent with previous studies [6,11,12]. Sawada et al. [11] and Li et al. [12]
remarked that the assimilation of AMVs had a positive impact on track at the longer-range lead time,
though Velden et al. [6] showed that the inclusion of the enhanced AMVs had a benefit to track forecast
at shorter range lead times. The substantial reduction of track error at the longer-range lead time
is interesting because the RS-AMV data used in this study were distributed within around 1000 km
square from the TC center, which could not change the broader scale environmental steering flow.
Sawada et al. [11] attempted to explain the factor of track error reduction based on the optimum
steering flow diagnosis proposed by Galarneau and Davis [39]. The diagnosis indicated the small
initial steering flow differences seem to contribute to putting TCs on different trajectories, which is
nearer to the actual one. To examine the forecasted track difference, the difference between CTL and
RAMV for Nepartak is analyzed because the difference between the two was the largest.

Figure 6 shows an example of circulation patterns decomposed into two components:
environmental flows and TC-induced flows based on optimal steering flow diagnosis [39]. Simulated
flows were 48 forecast hours for Nepartak initialized at 1200 UTC 4 July 2016. The optimal steering
radius and depth were 300 km and 400 hPa from 850 to 450 hPa on average, respectively, from the
diagnosis of Sawada et al. [11]. Thus, the steering flows were calculated by averaging within the radius
of 300 km from the TC center and between 850 and 450 hPa in vertical. It is evident from Figure 6a that
the environmental flows for CTL and RAMV overlapped each other. From Figure 6c, which indicates the
difference between CTL and RAMV (RAMV minus CTL), there were small differences in environmental
flows (1 ms−1 at most) around the TC and little differences (less than 0.5 ms−1) outside the 1000 km from
the TC center. The slight difference in environmental flows indicates the assimilation of RAMV does
not change the environmental flows even for longer forecast lead time. The difference in TC-induced
flows between CTL and RAMV was found around the TC in Figure 6b,c. The vector differences in
TC-induced flows display stronger east-northeasterly component in RAMV than in CTL, leading to
the westward movement of the forecasted TC in RAMV. The TC-induced flow difference seems to
be similar to the flow pattern induced by the beta gyre effect. However, the weaker tangential flow
in RAMV would not enhance the beta gyre. The alternative interpretation is that the assimilation of
RAMV has imposed a wavenumber-1 flow to the vortex, and the flow difference might be amplified
with forecast lead time. The flow pattern differences may explain the reduction of track forecast by
assimilating that RAMV comes from the TC-induced flows, not the environmental flows.
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Figure 6. Circulation patterns separated into (a) environmental flows, and (b) TC-induced flows at
48 forecast hours for Nepartak initialized 1200 UTC 4 July 2016, in CTL (Black) and RAMV (Red).
(c) Difference in environmental flows with blue vectors and TC-induced flows with orange vectors
between RAMV and CTL (RAMV minus CTL). Vector differences smaller than 0.5 m s−1 are omitted for
clarity. TC Symbols display TC position for CTL (Black) and RAMV (Red).

However, the TC-induced flow difference or beta gyre flow pattern seems to be caused by the
difference of TC position between CTL and RAMV. To further evaluate the factor of track difference,
TC movements are calculated, in the same manner as forward trajectory, from the steering flow that is
a combination of the environmental and TC-induced flows. As a premise, the TC movement is well
represented by the forward trajectory calculation using the steering flow combination. To confirm
the premise, the TC movements were calculated using the sum of environmental and TC-induced
flows by CTL (SF_envCTL_tcCTL) and by RAMV (SF_envRAMV_tcRAMV), respectively. In Figure 7,
both SF_envCTL_tcCTL and SF_envRAMV_tcRAMV matched with the forecasted track by CTL
(FTRK_CTL) and RAMV (FTRK_RAMV). The result shows the TC movement calculation using the
steering flow combination can represent the forecasted track reasonably, and it will be possible to
decompose the impact of steering flows on the TC track.

Additional TC trajectories were calculated to investigate which is the key factor to the track
error reduction—the environmental flow or TC-induced flow. If the TC-induced flows contribute
to the reduction of the track error, the sum of the environmental flow by CTL and the TC-induced
flow by RAMV (SF_envCTL_tcRAMV) could be obtained the better TC trajectory than the sum
of the environmental flow by RMAV and the TC-induced flow by CTL (SF_envRAMV_tcCTL).
Figure 7 demonstrated that SF_envCTL_tcRAMV and SF_envRAMV_tcCTL overlap FTRK_RAMV
(SF_envRAMV_tcRAMV) and FTRK_CTL (SF_envCTL_tcCTL), respectively. It is evident that the
TC-induced flow plays a primary role in reducing the track error, and the impact of environmental
flow is negligible in this case. Note that there is nonlinear interaction between the environmental flow
and the TC-induced flow, and it has the potential to affect the TC track, which would amplify with
forecast lead time. It is difficult to evaluate the nonlinear interaction effect in this simple framework
and beyond the scope of this study.
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Figure 7. Forecasted track for Nepartak initialized at 1200 UTC 4 July 2016. BST is the best track.
FTRK_CTL and FTRK_RAMV are the forecasted track by CTL and RAMV. SF indicates the trajectory
calculated from the steering flows. envCTL and envRAMV represent the environmental flows by CTL
and RAMV, respectively. tcCTL and tcRAMV represent the TC-induced flows by CTL and RAMV,
respectively. TC symbols are plotted with a 24-h interval.

3.5. Axisymmetric Structures

The axisymmetric components were examined how the initial condition affect the TC intensification.
To compare the simulated results in this study with the previous observational studies [40,41], the HWRF
output on pressure coordinates was interpolated to the height coordinate. The radial structure is
normalized by the radius of maximum azimuthally averaged wind at a 2-km altitude based on a
previous study [40] to highlight the difference in essential TC structure. The composite is produced by
averaging 18 cycles from cycle 3 to cycle 20, corresponding to Meranti’s intensification through to the
mature stage. The averaged RMWs at a 2-km altitude were 63.8, 69.0, 71.8, and 64.1 km in CTL, RAMV,
RAMV_NVI, and RAMV_T10K, respectively.

The azimuthally averaged tangential wind speeds at the initial (FT = 0) are compared in Figure 8.
The assimilation of RS-AMV weakens the axisymmetric component of vortices outside the RMW at the
upper troposphere. The azimuthally averaged tangential wind speed of RAMV_NVI was the smallest
in the four experiments, followed by RAMV, and by RMAV_T10K. Without VI, the TC vortex was
weakened from the lower throughout to the upper atmosphere, and it was a raw impact of RS-AMV
assimilation on the TC structure. VI makes the TC vortex stronger, and the axis of RMW tilts outward.
By thinning the RS-AMV data, the weakening of the tangential wind was alleviated because the
excessive increment by RS-AMV was reduced.

Figure 9 shows the radial wind differences averaged for FT = 0–12 h between each experiment
and CTL for the lower troposphere. Note that negative values in contour indicate the radial inflows
and red color areas are positive anomalies from CTL, meaning that the weakening of radial inflows
to CTL. The low-level inflows were weaker in RAMV and RAMV_NVI than CTL and RAMV_T10K,
indicating that the RS-AMV assimilation weakens the low-level inflow. The maximum low-level inflow
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speeds are 12.4, 10.9, 10.1, and 11.9 m s−1 in CTL, RAMV, RAMV_NVI, and RAMV_T10K, respectively.
The weakening of low-level inflow was alleviated by thinning the RS-AMV data.

The moisture in the inner core (within a 300-km radius from the TC center) has a significant
impact on the TC intensification [42]. To examine the difference in inner core moisture distribution,
the azimuthally averaged relative humidity at the initial (FT = 0) is compared in Figure 10. Assimilating
RS-AMV makes the initial vortices moisten within the RMW above a 5-km height and dry lower
troposphere and outside the RMW. The response in the inner core is consistent with the pattern of initial
vortices as shown in Figure 8, which means the stronger vortices are, the drier the vortices become
in the inner core. The background error covariance generated from the HWRF ensemble provides
cross-variable correlations in the TC inner core reasonably. The drying around and outside the RMW
will slow the intensification, implying that the weak bias partly arises from the drying tendency caused
by RS-AMV assimilation. Without VI, the inner core became drier because the TC vortex became weak
compared to RAMV. Compared to RAMV, the thinning of RS-AMV mitigates the drying outside the
RMW so that weak bias caused by RS-AMV assimilation will be alleviated.

Figure 8. Radial-height cross section of azimuthally averaged tangential wind (contour) at the
initial (FT = 0) for Meranti. Color shading display the difference in azimuthally averaged wind (each
experiment minus CTL). Green and black dashed lines indicate the radius of maximum wind (RMW) at
each height for each experiment and CTL, respectively.
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Figure 9. As in Figure 8, but for radial wind azimuthally and temporally averaged for FT = 0–12 h.
Note that negative values in contour indicate the radial inflows and red color areas are positive
anomalies from CTL, meaning that the weakening of radial inflows to CTL.
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Figure 10. As in Figure 8, but for relative humidity.

4. Conclusions

To extend our previous research work about the TC forecast improvements through assimilating
the high-spatiotemporal Himawari-8 AMVs, we investigated how RS-AMV assimilation has impacts on
TC track, intensity, and size forecasts with the operational HWRF system in this paper. RS-AMV data
provided around 1000 km square at TC center and with a 10-min interval. This is much denser than the
AMV data used in the previous study. Target cases of this study are three TCs over the western North
Pacific in 2016. RS-AMV data are assimilated using ensemble-variational hybrid data assimilation.

Results from the inclusion of RS-AMV show improvements in the track forecast. The improvement
rate with regard to the CTL is 10 % larger at shorter and longer forecast lead times (FT = 6–24,
84–126 h). The intensity forecast error was reduced at longer forecast lead times by assimilating
RS-AMV, although the weak bias increases slightly at the initial forecast lead time (FT = 6–12 h).
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The R64 forecast was also improved at the shorter forecast lead times by assimilating RS-AMV,
while RMW was substantially degraded.

A comparison between the experiments with and without VI shows that there is little difference
in track and intensity forecast skills in the statistical verification, while the axisymmetric structures
have remarkable differences between the two. VI could help to improve the representation of the
inner core vortex structure when the typhoon is intense and has an axisymmetric structure such as
the selected typhoons in this study. However, the impact of VI was limited. The limited impacts of
VI imply that the dense AMV (RS-AMV) assimilation has the potential to provide the axisymmetric
component of TCs, which lead to intensification of TC, instead of using VI. Furthermore, it might
be one of the options to shift from the VI with craftsmanship to the sophisticated objective analysis
method combined with dense satellite observations surrounding TC such as microwave sounding
like TROPICS [43], GPS-based observation like CYGNSS [44], geostationary microwave sounder [45]
and L-band wind speed from Soil Moisture Ocean Salinity mission [46] and Soil Moisture Active
Passive mission [47]. These dense observational systems will capture the asymmetric component of
TC, which cannot be obtained from the VI [48].

To examine the impact of horizontal observation error correlations of RS-AMVs, the AMV
horizontal thinning distance of 10 km was conducted. The thinning of AMV data has substantial
impacts on track and intensity forecast. By applying the thinning to the AMV data, the track forecast
skill was improved only for the first 12 h but was degraded beyond FT = 60 h compared to the
experiment without thinning. On the other hand, the experiment with thinning shows the intensity
forecast skill was improved at more than half of forecast lead times. These indicate that the current
thinning process and/or assimilation configuration is suboptimal for the track forecast. The horizontal
observation error correlations of RS-AMVs is nonnegligible because the RS-AMVs used in this study
were densely derived. One of the possible ways to solve this issue without adjusting the thinning
distance is to treat the off-diagonal component of the observation error covariance matrix. An additional
experiment with a configuration using RS-AMVs and where VI is off but thinning is on may help to
understand the impact of thinning because the VI has a considerable influence on the TC inner core
structure, which may hinder the thinning impact.

As further use of satellite data products, the rapid data assimilation cycle, such as 5–15-min
intervals, has the potential to improve the TC analysis and forecast [49] and TC-induced rainfall
forecast [21,49], and isolated convective rainfall [48]. Incorporating these sophisticated assimilation
systems is beyond the scope of this study but is a worthwhile direction for future research. The direct
radiance assimilation is another straightforward way to make use of the satellite observation [49–52],
which will complement each other as information different from AMV.
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